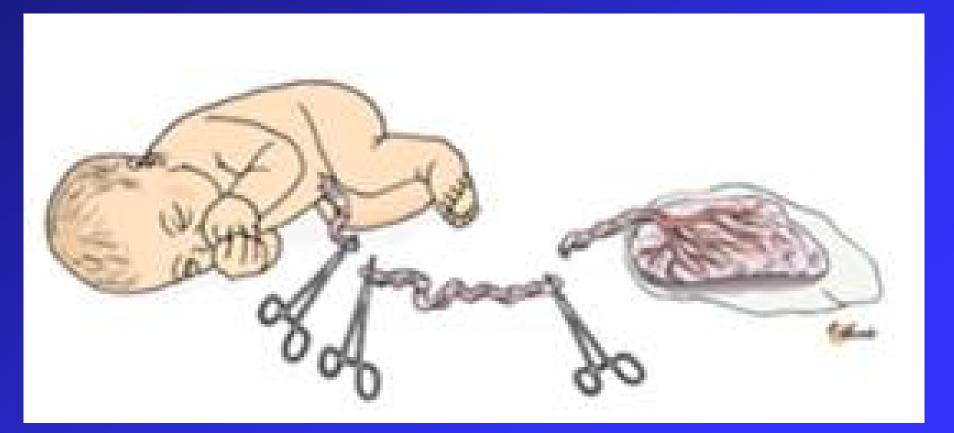
Umbilical-Cord Blood Gas Analysis in Obstetrical Practice

Webinar - Wednesday, July 1, 2015


Jan Stener Jørgensen, MD, PhD Head of Obstetrics Professor of Clinical Obstetrics **Odense University Hospital University of Southern Denmark**

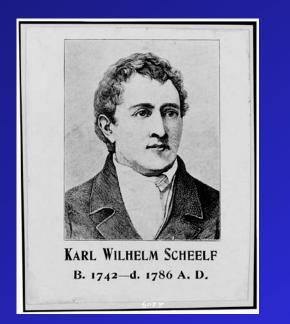
Umbilical-Cord Blood Gas Analysis
A reliable method to describe fetal oxygenation
and possible birth asphyxia

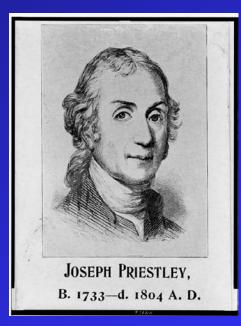
Fetal asphyxia

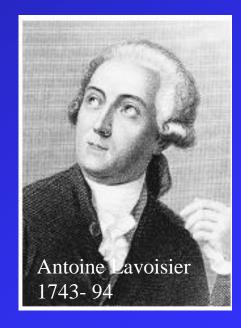
- Asphyxia (from Greek) means no "pulse"
- Usual definition: insufficient oxygen (O_2) supply/ uptake and insufficient carbondixide (CO_2) exchange.
- This definition is less useful in daily clinical life, as fetal pO₂ is always low in the interuterine life and during labour

- Accordingly, better described and defined by

• Apgar scores


Fetal acid-base status at birth
Umbilical-Cord Blood Gas Analysis




At the end of the day it is all about the presence or abscence of

oxygen (O2)

Who discovered oxygen first?

"Hard-luck Scheele" made a number of chemical discoveries - before others who are generally given the credit for it..

... but here is where fetal surveillance started...

Figure 1.1 Jacques Alexandre de Kergaradec, robed as a Membre de l'Academie de Medicine Paris. (With thanks to Professor J. H. M. Pinkerton, Emeritus Professor of Midwifery and Gynaecology, Queen's University of Belfast)

Intrapartum fetal surveillance

- **1821** First auscultation of FHR
 - Kergaradec, Geneve
- 1833 Observations on obstetric auscultation
 Kennedy, Dublin
- **1897** Spasticity might arise in fetal life *Freud, Wien*

Intrapartum fetal surveillance

- 1906 First fetal ECG
 Cremer, Germany
- 1908 First fetal phonocardiogram *Hoffbauer Weiss, Germany*
- **1958** CTG / EFM Hon, USA
- **1958** First Umbilical Cord Blood Gas Analysis - James, USA (N.Z.)

The Journal of Pediatrics

Vol. 52

April, 1958

No. 4

THE ACID-BASE STATUS OF HUMAN INFANTS IN RELATION TO BIRTH ASPHYXIA AND THE ONSET OF RESPIRATION

L. S. JAMES, M.B. (N.Z.), I. M. WEISBROT, M.D.,* C. E. PRINCE, M.D.,** D. A. HOLADAY, M.D., AND V. APGAR, M.D. NEW YORK, N. Y.

Intrapartum fetal surveillance

- **1961** scalp-pH Saling, Berlin
- 1968 scalp-lactate Monti, Milan

• **1974** continuous tissue-pH *Stamm, Lausanne*

• **1978** transcutaneous pO₂ and pCO₂ *Huch, Marburg*

Clinical purpose of cord blood gas analysis

- Determine neonatal acid-base status at birth for the detection of birth asphyxia
- Possible assessment tool to document quality of care within obstetrical units
- Documentation of neonatal acid base status at birth in case of litigation towards obstetricians, midwives or obstetrical departments

Facts & figures

Globally, 4 - 9 million neonates suffer from asphyxia each year [1]

1.2 million neonates die from birth asphyxia and about the same number develop severe disabilities[1]

29% of global neonatal deaths are caused by birth asphyxia [1]

Omo-Aghoja L. Maternal and fetal acid-base chemistry: A major determinant of outcome. Annals of Medical and Health Sciences Research 2014; 4: 8-17

Umbilical-Cord Blood Gas Analysis

- Umbilical-Cord Blood Gas Analysis (UCBGA) provides important information about the past, present and – to some degree – future condition of the newborn infant
- Now recommended in all high-risk deliveries by both ACOG and RCOG
- In many countries, like in Denmark, and in many centres UCBGA is now a routine procedure following all deliveries

Umbilical-Cord Blood Gas Analysis

• UCBGA is of increasing clinical importance, and in many countries (like in the US and UK) also of medicolegal importance

Clinicians should be familiar with:

- the background to interpret the blood gas values
- the practice to obtain the samples

UCBGA - Clinicians should be familiar with:

- Maternal fetal gas exchange
- Development of asphyxia
- Normal and pathological values of cord blod gasses
- Factors influencing the blood gasses
 - Evaluation and interpretation of fetal acidosis

UCBGA - Clinicians should be familiar with:

• Respiratory acidosis and metabolic acidosis

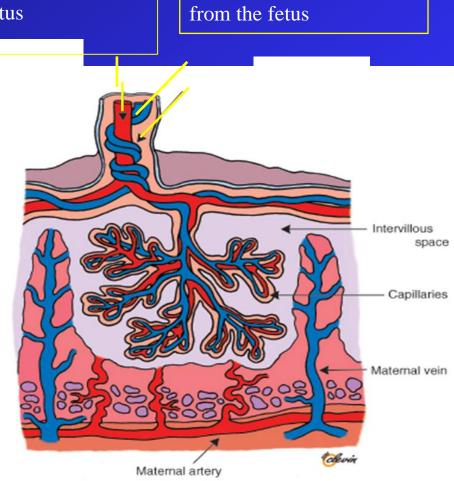
- Significance of different combinations of acidosis and Apgar scores
 - Factors influencing the umbilical cord blood gasses
 - Arterio-venous differences and their significance

UCBGA - Clinicians should be familiar with:

• Different prognostic features

Sampling procedures

• Storage


Placental anatomy and physiology

Cord **artery** blood reflects fetal acid-base status whereas the **vein blood** reflects the oxygen (and nutritional) supply form the placenta

Preferably parameters derived from **both** cord **artery and vein blood** are used to assess neonatal condition at delivery One large cord **vein** carries oxygenated blood and nutrient to the fetus

Two small cord **arteries** carry deoxygenated blood and waste products (CO2) from the fetus

PLACENTA

Understanding gas exchange during labour

- Adequate supply of oxygenated maternal blood reaching placenta
- Gas exchange across placenta
- Supply of oxygenated blood to fetus through open umbilical vein
- Sufficient metabolic reserve in fetus to withstand "hypoxic effect" of uterine contractions

Impairment may lead to risk of birth asphyxia Brain damage

Long-term neurological disorders – cerebral palsy

Neonatal death

What can cause foetal hypoxia/asphyxia:

Cause:

Maternal hypotension

- suppine position, anaesthesia, vasodilation (epidural)

Maternal hypoventilation - apnoe /eclampsia

Maternal cathecolamines (adrenalin) fear, pain, stress

Effect:

Utero-placental flow

Maternal $pO_2 / SO_2 \downarrow$

Utero-placental flow (from animal experiments)

What can cause foetal hypoxia/asphyxia:

Cause:

Uterine hypertonia hyperstimulation overefficient uterine activity

Effect:

Utero-placental flow \Downarrow

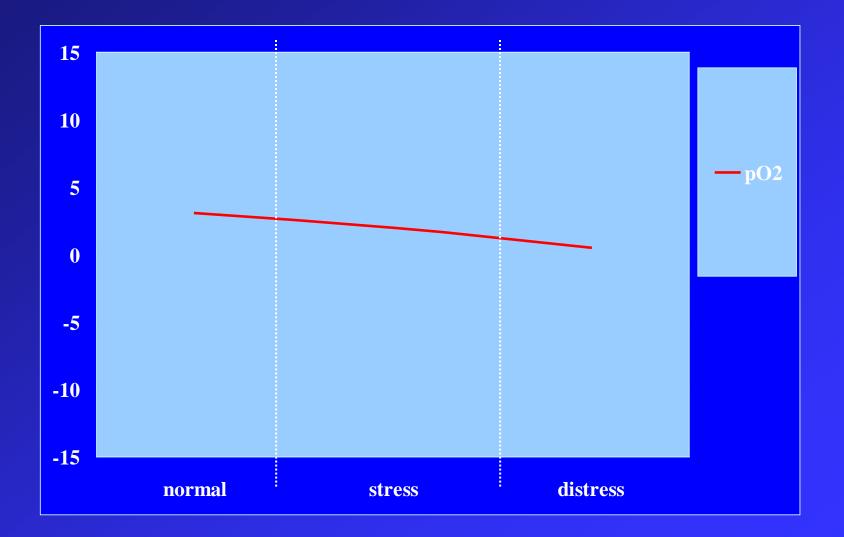
Cord compression

- oligohydramnios, (maternal) position, breech, cord entanglement, nuchal cord prolapse Foeto-placental flow \Downarrow decreased/blocked O₂/CO₂ - exchange

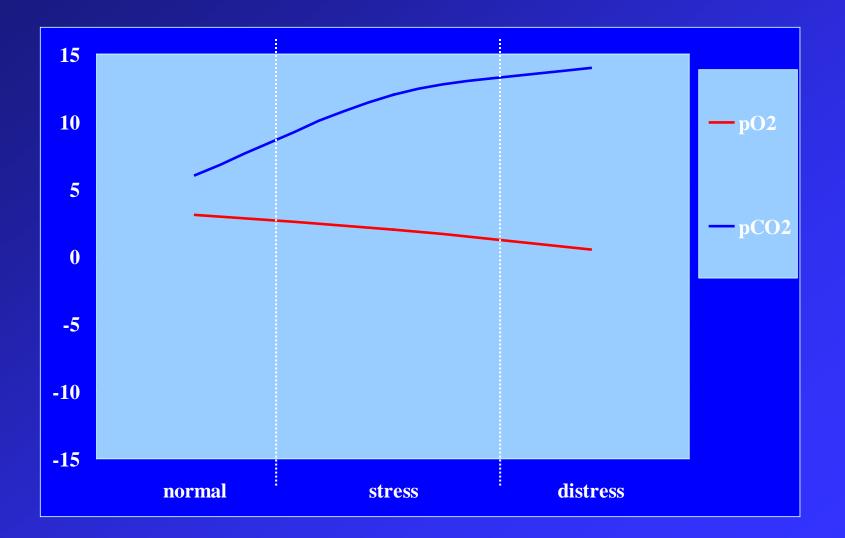
Placental abruption / insufficiency

Foeto-placental flow \Downarrow decreased/blocked O₂/CO₂ exchange

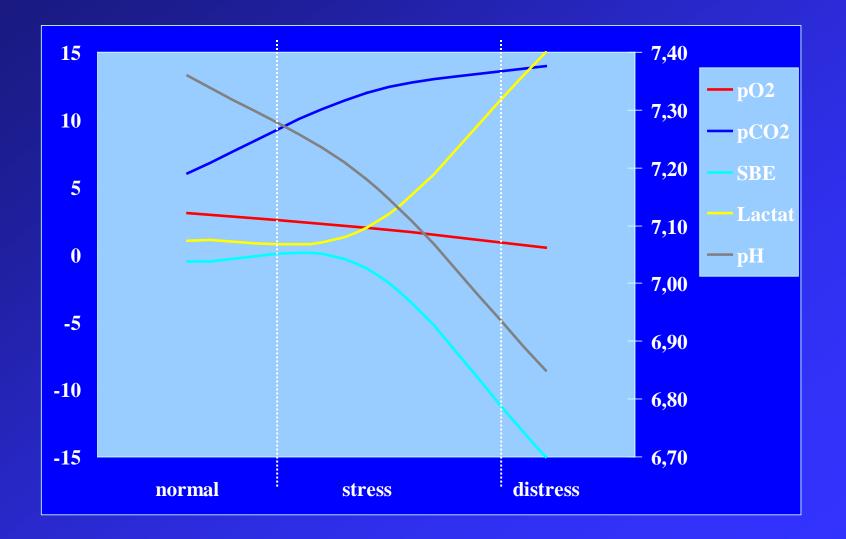
all some provide after.



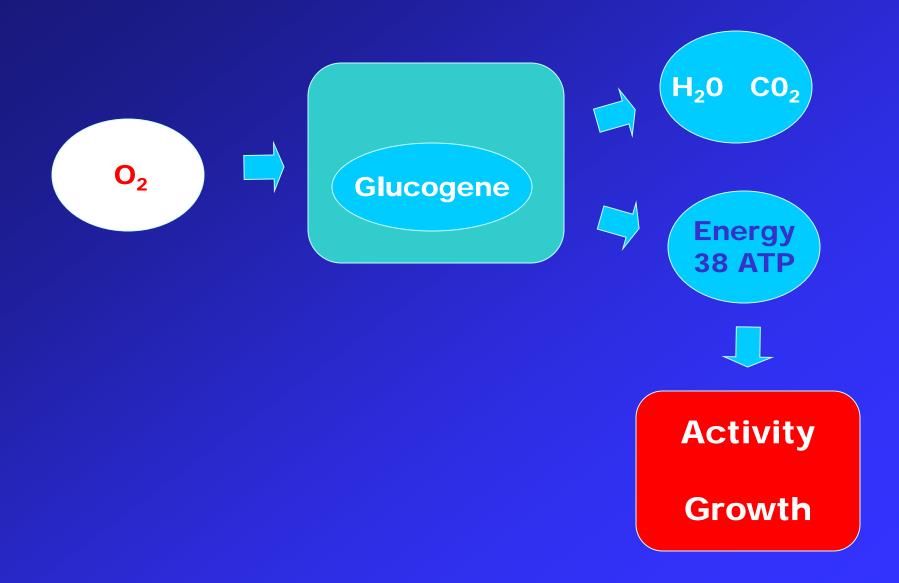
Cord entanglement, a knot – or rather "a tie"


Protective amniotic (sac) fluid

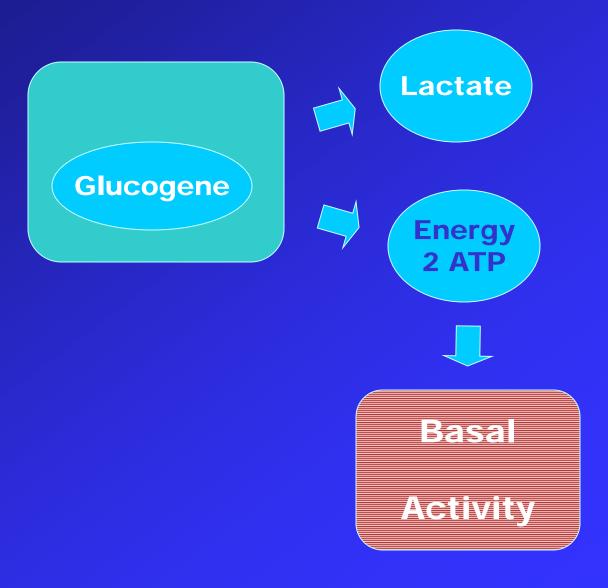

Asphyxia during labour pO_2


Asphyxia during labour pCO₂

Asphyxia during labour pH



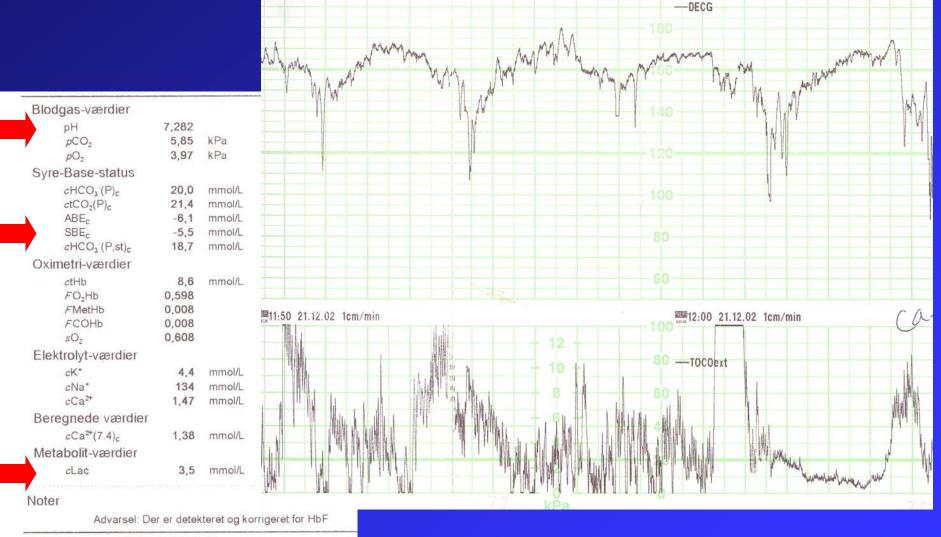
Asphyxia during labour SBE, lactate



Asphyxia during labour Pre-acidotic Respiratory acidosis Metabolic acidosis 15 7,40 **- pO2** 7,30 10 -pCO2 7,20 SBE 5 7,10 0 **-**pH 7,00 -5 6,90 -10 6,80 -15 6,70 normal distress stress

Aerobic metabolism

Anaerobic metabolism


Fetal physiology during labour

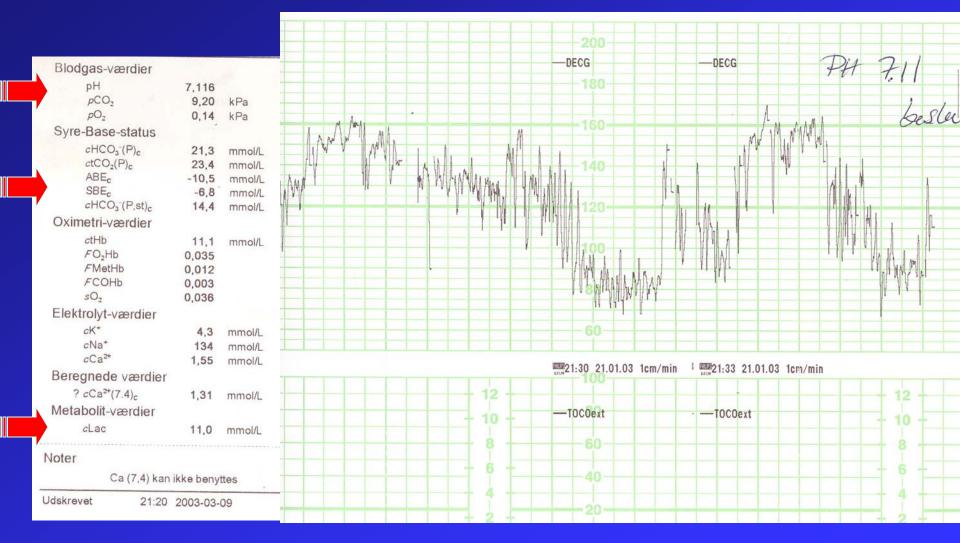
Pre-acidotic period

• Increasing oxygen utilisation (Bohr effect)

• Decreasing activity

Fetal physiology during labour – preacidotic period

Udskrevet

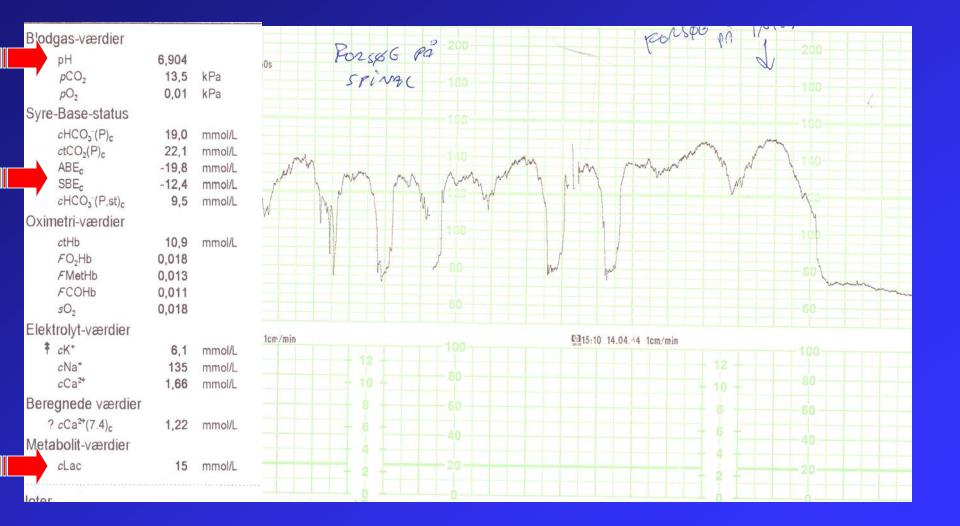

16:21 2002-09-19

Fetal physiology during labour

Respiratory (hypercapnic) acidosis

- release of stress hormones
- redistribution of foetal blood flow
- anaerobic metabolism in peripheral tissue

Fetal physiology during labour - Respiratory acidosis


Fetal physiology during labour

Metabolic acidosis

• anaerobic metabolism in vital organs

• risk of heart and brain failure

Fetal physiology during labour - metabolic acidosis

Normal and pathological values of cord blood gasses

Table 1 Studies reporting umbilical cord values for term and preterm infants

Umbilical artery					Umbilical vein					
Author	pН	Base excess (mmol/l)	Pco ₂ (kPa)	Po ₂ (kPa)	рH	Base excess (mmol/l)	Pco ₂ (kPa)	Po ₂ (kPa)	Number	Population studied
Victory et al ²¹ 2004	7.24 (0.07)	-5.6 (3.0)			7.33 (0.06)	-4.5 (2.4)			20 456	Term non-anomalous singletons
Helwig et al ² 1996	7.26 (0.07)	-4.0 (3.0)	7.05 (1.33)	2.26 (0.8)	7.34 (0.06)	-3.0 (3.0)	5.45 (0.93)	3.86 (0.93)	15 073	All gestations, all delivery types, Apgar >75
Thorp et al" 1989	7.24 (0.07)	-3.6 (2.7)	7.49 (1.14)	2.38 (0.92)	7.32 (0.06)	-2.9 (2.4)	5.83 (0.89)	3.82 (0.97)	1694a 1820v	Term, nulliparous, SOL, all delivery types
Riley and Johnson ²⁰ 1993	7.27 (0.07)	-2.7 (2.8)	6.69 (1.48)	2.45 (1.09)	7.34 (0.06)	-2.4 (2.0)	5.41 (1.05)	3.79 (1.02)	3522	Term singleton infants, vaginal delivery
Dickinson et al ²³ 1992	7.26 (0.08)	-3.2 (2.9)	7.05 (1.33)	2.53 (1.05)	7.33 (0.07)	-2.6 (2.5)	5.77 (1.1)	3.88 (1.29)	1393a 1526v	Preterm (24-36 weeks), normal CTG

Data are presented as mean (SD). Arterial (a) and venous (v) sample numbers are given separately where available. CTG, cardiotocogram; SOL, spontaneous onset of labour; SVD, spontaneous vertex delivery.

pН	Umbilical artery 7.24-7.27	Umbilical vein 7.32-7.34
BE (mmol/l)	-2.75.6	-2.44.5
pCO2 (kPa)	6.69-7.49	5.54 - 5.83
pO2	2.26-2.45	3.79 – 3.88

... values in mm Hg, Lactate - and human adult values for comparison

Table I. Median ranges for umbilical cord blood gas, base excess and lactate values [8].

	Umbilical Artery (n =12,345)	Umbilical Vein (n =12,345)	Adult artery (non-cord) blood values (for comparison only)
pH median	7.27	7.35	7.40
pO2 median (kPa)	2.2	3.7	12.0
pO ₂ median (mm Hg)	16.3	27.9	90
pCO ₂ median (kPa)	7.3	5.4	5.3
pCO ₂ median (mmHg)	55.1	40.4	40
Base excess (mmol/L)	-3.00	-3.00	0
Lactate (mmol/L)	3.7		1.0

 White C et al. Benefits of introducing universal cord blood gas and lactate analysis into an obstetric unit. Australia and New Zealand J of Obstetrics and Gynaecology 2010; 50: 318-28.

Factors influencing the UC blood gasses

- Mode of delivery
- Gestational age
- Parity
- Fetal presentation (Breech)
- Cord entanglement
- Oligohydramnios
- Multiple pregnancies
- Regional anesthesia

• (Fever – chorionamnitis)

Arterio-venous differences and their significance

British Journal of Obstetrics and Gynaecology December 1994, Vol. 101, pp. 1054-1063

OBSTETRICS

Umbilical cord blood gas analysis at delivery: a time for quality data

JENNIFER WESTGATE Lecturer/Honorary Senior Registrar, JONATHAN M. GARIBALDI Research Assistant, KEITH R. GREENE Consultant/Honorary Senior Lecturer Perinatal Research Group, Postgraduate Medical School, Department of Obstetrics, Derriford Hospital, Plymouth

Conclusions Both artery and vein cord samples must be taken and the results screened to ensure separate vessels have been sampled. Interpretation of the results requires the examination of PCO₂ and base deficit of the extracellular fluid from each vessel as well as the pH. Confusion about the value of cord gas measurements may be due to the use of erroneous data and inadequate definitions of acidosis which do not differentiate between respiratory and metabolic components.

Verifying that both cord artery - and vein sample was obtained

Blood from both cord artery and cord vein should preferably be collected and analyzed

To validate that a sample form cord artery has truly been obtained:

 Arterio-venous (A-V) differences for: pH > 0.02 pCO₂ > 0.5 kPa/3.75 mmHg

Insight into cause of acid-base disturbance

PATIENT-	15	#5 μL		6-02-; 19	PATIENT-RAPPORT	Navlestr	eng Vene - S 95 μL	Nr	10-02-2010 19588
Identifikationer Patlent-Id Rekvirent Prøvetype Specialprøver Note Bruger	546 Navlestri Arteriebli SNIE038	od	CORD	ARTER	Identifikationer Patient-Id Rekvirent Prøvetype Specialprøver Note Bruger	546 Navlestreng Veneblod SNIE0381		CORD	VEIN
Blodgas-værdier		and the second			Blodgas-værdier				
pH	7,390)			pН	7,428	$\mathbf{)}$		
pCO ₂	5,74	kPa			pCO ₂	4.73	k Pa		
pO,	2.77	kPa			pO_2	4,70	kPa		
Syre-Base-status					Syre-Base-status				
ABEc	0,8	mmoi/L			ABEc	-0,2	mmol/L		
SBE _c Oximetri-værdier	1,1	mmol/L			SBE _c Oximetri-værdier	-0,7	mmol/L		
ctHb	10.4	mmol/l			ctHb	10,5	mmol/L		
Metabolit-værdier					FHbF	0,83			
cGlu	4.8	mmol/L			Metabolit-værdier				
cLac	2.3	mmol/L			cGlu	5,5	mmol/L		
Natas					cLac	2,3	mmol/L		
Noter	t/beregnede v	an and (a m)			Noter				
	IbF-måling ikk				c Beregnet/be	regnede v	ærdi(er)		
Udskrevel 11:46	12 16-02-20	115			Udskrevel 11:46:02	16-02-20	015		

- 1. American College of Obstetricians and Gynecologists Committee on Obstetric Practice. Umbilical cord blood gas and acid-base analysis. Obstet Gynecol 2006; 108: 1319-22.
- 2. Westgate J *et al*. Umbilical cord blood gas analysis at delivery: a time for quality data. Br J of Obstetrics and Gynaecology 1994; 101: 1054-63.

Interpretation of low and high A-V differences – in relation to acidosis and aphyxia

- A wide difference between umbilical artery and vein blood gas values is often due to an obstructed cord as for instance "nuchal cord" (*Martin*)
- A small difference is most likely caused by impairment of maternal perfusion of the placenta as in case of placental abruption (*Johnson*)
- When UcA-pH < 7.0 : The magnitude of A-V difference in pCO2 is directly correlated to the risk of developing HIE (*Belai*)

Interpretation of low and high A-V differences – in relation to acidosis and aphyxia

For prognostic value -

- It is of outmost importance to sample both arterial and venous blood for bloodgasses when the newborn is depressed, as...
- normal UcV blood gasses in the case of an obstructed umbilical cord

- could "hide" a severe acidosis with a high risk of an adverse outcome

Normal Cord Blood pH (both artery and vein) at birth does not entirely exclude acute intrapartum asphyxia:

Sudden an total obstruction of cord vessels

• Sudden fetal cardiac arrest

• .. in these cases blood gasses taken post partum would reveal severe acidosis

• What is severe fetal acidosis?

- Most authors agree on ph < 7.0 as severe acidosis
- Prevalence: 0.4 1 %
- Low pH in combination with other abnormal clinical patterns (e.g. cardio-pulmonary) is associated with high risk of poor long-term outcome
- This also counts for pathological intrapartum findings

25-25 term newborns	seizures	<u>no seizures</u>	p-value
pН	6.84 <u>+</u> 0.12	6.89 <u>+</u> 0.11	NS
BD	-18.1 ± 9.1	-16.6 <u>+</u> 6.1	NS
Baseline FHR	143 <u>+</u> 11	146 <u>+</u> 16	NS
Bradycardia	56%	<u>84%</u>	<i>'</i> 0.06'
Decelerations	36, 32 %	<u>50, 52 %</u>	NS
Accelerations	<u>24%</u>	48%	NS
Min/absent variab.	<u>64%</u>	36%	' 0.08 '
Duration abnormal	72 <u>+</u> 12 min	36 <u>+</u> 18 min	0.001

Williams and Galerneau. J Perinat Med 2004; 32: 422-5

• Signifance of different combinations of acidosis and Apgar scores

Low pH - but normal Apgar scores:

• Short period of acidosis (most likely respiratory)

• Fair prognosis

• Signifance of different combinations of acidosis and Apgar scores

Normal pH - but low Apgar scores:

- Chronically sick child
 no hypoxia during the last part of the delivery
- Earlier condition of e.g. hypoxia, infection, malformation or prematurity

• Prognosis - depending on the cause

• Signifance of different combinations of acidosis and Apgar scores

Low Apgar scores - and low pH:

Severe asphyxia - of a certain duration

 during labour
 (most likely metabolic acidosis)

 Prognosis: pH – but also BE (lactate) is of prognostic importance pH is no ideal measure for cumultative exposure to acidosis due to anaerobic metabolism

- pH is logarithmic (nor linear) directly correlated to pCO2 accumulation
- Base excess provides a more linear measure of the accumulation of metabolic acid
 - adjusted for pCO2

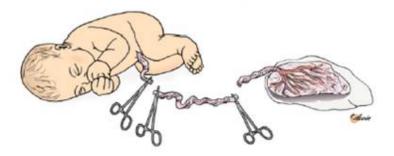
The cord blood sampling should be performed by either method 1 or method 2:

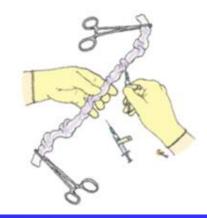
Method 1:

The cord blood sample must be collected immediately and within one minute after delivery of the neonate.

So, the blood is collected before the placenta is delivered and before the cord is clamped and separated from the neonate [27]

Method 2:


A segment of the cord must be isolated immediately and within one minute after delivery of the neonate.


When the cord and placenta are separated from the neonate, the cord segment is placed on the delivery table.

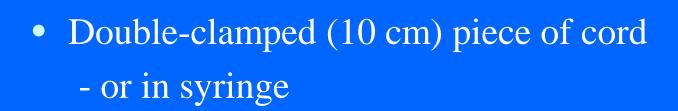
The cord blood sample must be collected within 60 minutes after delivery [27-29]

For method 1 and 2 the collection should be performed as follows:

For method 1 and 2 the collection should be performed as follows:

Collect the cord *artery* sample first. Push the plunger down as far as it can go. Insert the cannula parallel to the artery; pull the plunger for collection of the cord artery blood sample.

Then collect the cord *vein* sample. Push the plunger down as far as it can go. Insert the cannula parallel to the vein; pull the plunger for collection of the cord vein blood sample.


Delayed cord clamping

In recent years there has been increasing acceptance of delaying the cord clamping procedure by 2-3 minutes after delivery for the benefit of placental blood transfusion (extra blood volume) to the neonate [39].

A recent Cochrane review of studies in this area concluded that the benefit to the neonate associated with delayed cord clamping (higher birth weight, increased hemoglobin concentration and iron reserves) outweighs the increased risk of jaundice. It states that a more liberal approach to delayed cord clamping is warranted [39]. The policy of delayed cord clamping clearly poses a potential problem for accurate assessment of neonatal acid-base status at the moment of delivery, because of the "hidden acidosis" phenomenon (See section

A solution to this problem has been validated by the results of two recent clinical studies [30, 40]. The solution, which is standard practice in some units, is to sample blood directly from the still pulsating unclamped umbilical cord, at the moment of delivery, rather than from a separated clamped cord segment. This way there is no risk of "hidden acidosis" and the neonate can take advantage of the delayed clamping.

• On ice – for up to 60 minutes.....

Asphyxia - prognosis

- Apgar score by it self has a poor prognostic value
- Both the Apgar score as well as pH / BE should be used to more precisely predict the prognosis at birth

Asphyxia – prognosis Does pH correlate to longterm outcome?

Strength of association between umbilical cord pH and perinatal and long term outcomes: systematic review and meta-analysis

Gemma L Malin, clinical research fellow,¹ Rachel K Morris, clinical research fellow,¹ Khalid S Khan, professor of obstetrics, gynaecology, and clinical epidemiology^{1,2}

Cite this as: BMJ 2010;340:c1471

	negative	s/No with event				
Study	Died	Survived	No of neonates	pH threshold		Odds ratio (random effects)
High risk population					(95% CI)	(95% CI); EPI
Baenziger et al 1999 ⁵⁰	1/2	6/8	10	7.00		3.0 (0.1 to 73.6)
Haddad et a 2000 ⁶²	15/19	2/9	28	7.00		1.1 (0.2 to 7.3)
Hibbard et al 2001 ⁶⁴	4/35	132/136	171	7.05		4.3 (1.0 to 18.0)
Beeby et al 1994 ⁴	17/88	494/535	623	7.10		2.9 (1.6 to 5.4)
Holmes et al 2001 ⁶⁶	0/2	72/74	76	7.10		- 5.8 (0.2 to 155.3)
Tejani and Verma 1989 ⁸³	8/53	328/339	392	7.10		5.3 (2.0 to 13.9)
Yudkin et al 1994 ⁸⁹	3/3	94/119	122	7.10		- 25.9 (1.3 to 518.6)
Bresadola et al 1995 ⁵¹	18/28	359/414	452	7.20		11.8 (5.2 to 26.8)
Casey et al 200153	11/18	912/1673	1691	7.20	+ - -	1.9 (0.7 to 4.9)
Kato et al 1996 ⁵	2/2	165/193	195	7.20	∎ →	- 29.0 (1.4 to 620.7)
Luthy et al 1987 ⁷⁴	6/25	160/174	199	7.20		3.6 (1.2 to 10.5)
Unselected population						
Heller et al 2003 ¹	11/206	462 597/464 139	464 345	7.00		16.2 (9.2 to 31.1)
Ingemarrson et al 1997 ⁶⁸	2/2	247/306	308	7.00		- 20.8 (1.0 to 439.0)
Vintzileos et al 1993 ⁹⁰	2/7	657/671	678	7.10	_ _>	- 18.8 (3.4 to 105.2)
Ghosh 2003 ⁵⁷	2/2	49/73	75	7.15		10.1 (0.5 to 218.7)
Subgroup meta-analysis						
High risk population (11 s	tudies)		3959			4.2 (2.6 to 6.9), 1.3-13.7
Test for heterogeneity: 12	=35.1%, F	P=0.118				$\langle \rangle$
Unselected population (4	studies		466 406		/ →	16.9 (9.7 to 29.5); 5.0-57.3
Test for heterogeneity: I ²	=0.0%, P=	=0.985				
High quality studies (7 stu	udies ⁵⁰ S	57 64 74 75)	2946			4.3 (2.2 to 8.5); 1.1 17.0
Test for heterogeneity: I ²	=19.9%, F	P=0.278			\mathbf{X}	
Low or medium quality stu	udies (8 st	udies ^{14 5 51 62 66 68 83}	3) 466 419			6.9 (3.1 to 15.2); 0.7-69.2
Test for heterogeneity: I ²	=71.7%, F	P=0.001		0.0	1 1 1	00
Overall: I ² =61.0%, Harbord	l: no smal	l study effects, P=0.	111			

Fig 2 Association of low arterial cord pH with neonatal mortality. PI=estimated predictive interval

No of true positives or true

BMJ | ONLINE FIRST | bmj.com

Association of : low arterial cord pH with neonatal morbidity

			es or true negati l or unaffected	ives/			
Study	Outcome measure (definition)	Affected	Unaffected	No of neonates	pH threshold	Odds ratio (random effects)	Odds ratio (random effects)
High risk population						(95% CI)	(95% CI); EPI
Baenziger et al 1999 ⁵⁰	HIE (Sarnat grade >1)	2/5	4/5	10	7.00		2.7 (0.2 to 45.1)
Engle et al 1999 ⁵⁶	HIE plus seizures (NS)	7/7	49/56	73	7.00		► 42.4 (2.3 to 782.1)
Gonzalez de Dios et al 2000 ⁵⁹	HIE (Levine, all grades)	12/41	133/139	180	7.00		9.2 (3.2 to 26.5)
Graham et al 2002 ⁶⁰	Seizures (NS)	3/10	24/24	34	7.00		 22.9 (1.1 to 494.6)
Graham et al 2004 ⁶¹	PVL (NS)	3/107	120/122	229	7.00	_	1.7 (0.3 to 10.6)
Haddad et al 2000 ⁶²	HIE (NS)	8/9	1/2	11	7.00		 8.0 (0.3 to 255.8)
Hernandez et al 1993 ⁶³	Mechanical ventilation	11/39	37/43	82	7.00		2.4 (0.8 to 7.4)
Loh et al 1998 ⁷²	HIE (NS)	2/2	64/67	69	7.00		 92.1 (3.7 to 2309.1)
Socol 1994 ⁸¹	Seizures (NS)	3/3	17/25	28	7.00		 14.4 (0.7 to 311.8)
Hibbard et al 2001 ⁶⁴	Seizures/atrophy (NS)	1/18	144/150	168	7.05		► 1.4 (0.2 to 12.4)
	IVH (NS)	5/55	112/115	170	7.05		3.7 (0.9 to 16.2)
Beeby et al 1994 ⁴	IVH (Papile grade 3 or 4)	13/48	447/490	538	7.10		3.9 (1.9 to 7.9)
Ertan et al 2006 ⁹¹	IVH (Papile, all grades)	24/60	45/60	120	7.10		2.0 (0.9 to 4.4)
Holmes et al 2001 ⁶⁶	IVH (Papile grade 3 or 4)	0/4	70/72	76	7.10		3.1 (0.1 to 75.5)
Salafia et al 1995 ⁷⁸	IVH (NS)	0/44	357/362	406	7.10		0.7 (0.04 to 13.4)
Tejani and Verma 1989 ⁸³	IVH (Papile, all grades)	3/53	323/339	392	7.10	_	1.2 (0.3 to 4.3)
Yoon et al 1996 ⁸⁸	PVL (cystic/echogenic WM)	8/20	114/133	153	7.15		4.0 (1.5 to 11.1)
Blackwell et al 2001 ⁵²	Seizures (NS)	1/1	5/7	8	7.20	_	1.0 (0.8 to 4.2)
Casey et al 2001 ⁵³	Seizures (NS)	47/66	900/1625	1691	7.20	-	3.1 (1.8 to 5.3)
Luthy et al 1987 ⁷⁴	IVH (Papile grade 3 or 4)	17/33	163/176	209	7.20		5.5 (1.9 to 15.7)
Unselected or low risk population	on						
Gilstrap et al 1989 ⁵⁸	Seizures (NS)	2/2	2718/2734	2736	7.00		 169.9 (22.5 to 1281.4)
Ingemarrson et al 1997 ⁶⁸	HIE (NS)	8/10	345/298	308	7.00		18.5 (3.8 to 89.6)
Larma et al 2007 ⁷⁰	Seizures (NS)	8/9	106/205	214	7.00		8.6 (1.1 to 69.7)
	IVH (NS)	7/11	103/203	214	7.00	_ 	1.8 (0.5 to 6.4)
Perlman and Risser 1996 ⁷⁶	Seizures (Volpe)	5/5	75/90	95	7.00		50.3 (2.7 to 955.6)
Silva et al 2008 ⁸⁰	HIE (NS)	2/2	156/172	174	7.00		► 47.4 (2.2 to 1030.3)
	Seizures (NS)	2/11	147/162	173	7.00		3.3 (0.8 to 13.4)
Valentin et al 1993 ⁸⁵	Composite morbidity (grade 4/5) 1/8	151/163	171	7.00	_	1.8 (0.2 to 15.8)
Van den Berg 1996 ¹⁰	Seizures (NS)	9/10	83/158	168	7.00		10.0 (1.2 to 80.5)
	IVH (NS)	5/7	82/161	168	7.00	_ _	2.6 (0.5 to 13.8)
Huisjes and Aarnoudse 1979 ⁶⁷	Abnormal neurology (Prechtl)	20/54	698/784	838	7.09	-	4.8 (2.6 to 8.7)
Litschgi et al 1974 ⁷¹	Abnormal neurology (NS)	12/50	934/962	1012	7.09		14.3 (6.6 to 31.0)
Dijxhoorn et al 1986 ⁴¹	Abnormal tone/movement	1/27	691/776	803	7.10		0.3 (0.04 to 2.3)
Ghosh 2003 ⁵⁷	HIE (NS)	10/10	49/55	75	7.15		63.0 (3.5 to 1135.0)
Sakaruba and Saling 1989 ⁷⁷	IVH (NS)	2/5	161/173	178	7.19		8.9 (1.4 to 58.8)
Subgroup meta-analysis							
Composite morbidity in high risl	k population (18 studies)			4339			3.4 (2.3 to 4.9); 1.4-8.4
Test for heterogeneity: I ² =26.4	%, P=0.146						
Composite morbidity in unselec	ted or low risk population (12 stu	dies)		5977			- 10.6 (4.7 to 24.1); 0.8-135.8
Test for heterogeneity: I ² =66.4	%, P=0.001						
HIE (any population) (7 studies)				827			13.8 (6.6 to 28.9); 5 2-36.4
Test for heterogeneity: I ² =0.0%	6, P=0.525						
Seizures (any population) (9 stu	idies)			5147		· · · · · · · · · · · · · · · · · · ·	8.1 (3.0 to 21.9); 0.4-153.6
Test for heterogeneity: I ² =66.3	%, P=0.003					· · ·	
IVH or PVL (any population) (12 studies) 2						•	2.9 (2.1 to 4.1); 2.0-4.3
Test for heterogeneity: I ² =0.0%	6, P=0.666				0.01	1 1	.00
Overall: I ² =58.2%, Harbord test I	P=0.008						
*Not included in meta-analysis o	f any morbidity						

No of true positives or true negatives/

Fig 3 | Association of low arterial cord pH with neonatal morbidity. HIE=hypoxic ischaemic encephalopathy; IVH=intraventricular haemorrhage; PVL=periventricular leucomalacia; NS=not stated; WM=cerebral white matter; EPI=estimated predictive interval

Association of low arterial cord pH - with cerebral palsy

	N	No of true positives or true negatives/ No with or without cerebral palsy						
Study	Definition	Cerebral palsy	No cerebral palsy	No of children	pH threshold	Odds ratio (random effects) (95% Cl)	Odds ratio (random effects) (95% CI); EPI	
Ingemarrson et al 1997 ⁶⁸	NS	0/2	139/200	202	7.00		0.5 (0.02 to 9.6)	
Socol 1994 ⁸¹	NS	5/6	3/6	12	7.00		5.0 (0.3 to 72.8)	
Gaudier et al 1994 ⁴⁹	Abnormal movements/postur	e 3/30	182/189	219	7.05		2.9 (0.7 to 11.9)	
Beeby et al 1994 ⁴	NS	1/20	219/235	255	7.10	_	0.7 (0.1 to 5.7)	
Murphy et al 199575	Permanent movement disorde	r 6/24	112/128	152	7.10	- - -	2.3 (0.8 to 6.8)	
Kato et al 1996 ⁵	NS	3/8	98/113	121	7.20		3.9 (0.9 to 18.1)	
Luthy et al 1987 ⁷⁴	NS	3/19	126/137	156	7.20	_ 	2.2 (0.5 to 8.5)	
Overall (7 studies))			1117			2.3 (1.3 to 4.2); 1.1-5.0	
Test for heterogeneity: I ² =	0.0%, P=0.777					0.01	100	

Fig 4 | Association of low arterial cord pH with cerebral palsy. NS=not stated; EPI=estimated predictive interval

WHAT IS ALREADY KNOWN ON THIS TOPIC

Umbilical cord pH at birth is frequently used to measure perinatal asphyxia

Neonatal and childhood mortality and morbidity, including cerebral palsy, are often attributed to fetal acidosis, as defined by a low cord pH at birth

Existing reports of the association between cord pH and adverse outcome are conflicting

WHAT THIS STUDY ADDS

Low cord pH is substantially associated with neonatal mortality and morbidity and cerebral palsy in childhood

These outcomes justify the increased surveillance of infants born with a low cord pH

Further research is, however, needed to explore the cost effectiveness of doing this test in all neonates

Conclusions and practice implications

Cord pH is currently assessed in infants believed to be at high risk for neonatal asphyxia. Our results suggest, however, that the strength of association with cord pH and outcome is not limited to this high risk population. Therefore future research should assess the use of cord pH across neonatal populations, particularly exploring the cost effectiveness of testing all neonates.

Conclusions and practice implications

Cord pH is currently assessed in infants believed to be at high risk for neonatal asphyxia. Our results suggest, however, that the strength of association with cord pH and outcome is not limited to this high risk population. Therefore future research should assess the use of cord pH across neonatal populations, particularly exploring the cost effectiveness of testing all neonates.

Intrapartum fetal surveillance

- *CTG/EFM*:
 - Introduced world-wide after 1970 without proper evidence
 - Intention and expectation was to get rid of CP due to intrapartum asphyxia
 - Low specificity causing high CS-rate
 - FBS was introduced meanwhile, and was found to increase the specificity

History of Biochemical Monitoring of the Fetus During Labor

Archiv für Gynäkologie 197, 108-122 (1962)

Aus der Städtischen Frauenklinik und Hebammenlehranstalt Berlin-Neukölln (Ärztlicher Direktor: Dr. E. JUNG)

Neues Vorgehen zur Untersuchung des Kindes unter der Geburt* Einführung, Technik und Grundlagen

Von

ERICH SALING

Mit 7 Textabbildungen

(Eingegangen am 10. April 1961)

Fetal Scalp Sampling (FBS)

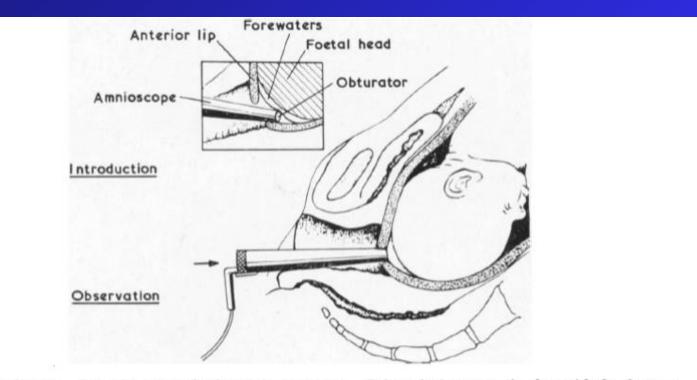


FIG. 1.—Amnioscopy. Inset shows introduction of the instrument. Below, the instrument in place with the obturator withdrawn.

Jørgensen & Weber, Pros&Cons Malmø 2013

FBS NB: suction by mouth

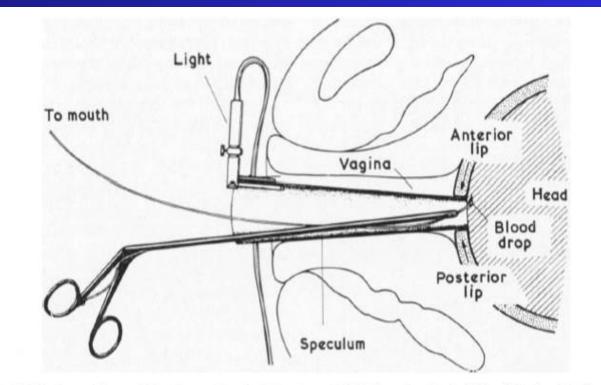


FIG. 2.—Foetal blood sampling. The presenting part has been pricked, and a drop of blood is about to be sucked into a heparinized tube, held in special forceps.

Jørgensen & Weber, Pros&Cons Malmø 2013

Normal values:

Scalp-pH is slowly decreasing during normal labour, with values between 7.45 og 7.25 (*Weber 79*)

No upper limits of normal scalp-pH have been described

pH decrease during normal labour: *(Weber 79)*

• I. stage: 0.016 pH unit per hour

• II. stage: 0.11 pH unit per hour

By <u>anoxia</u> (no oxygen supply at all)
e.g. total umbilical cord compression

- pH drops by <u>0.04 pH unit per min !</u>
 - e.g. from $7.20 \Rightarrow 6.80$ in 10 minutes

(Myers 72)

Scalp-pH – Intrauterine rescuscitation

- pH < 7.20
 - Incipient acidosis Risk of developing asphyxia
 - Consider intrauterine rescuscitation (tocolysis)
 - Continue CTG in theatre, if improvement after IUR avoid general anaesthesia
 - Deliver the baby

Scalp-pH – Acidosis - Hypoxia

- Hypoxia \Rightarrow Acidosis
 - $-CO_2$ accumulation

– Anaerobic metabolism, accumulation of lactate

• Low scalp-pH \Rightarrow low cord-pH

• Hence, scalp-pH can predict fetal acidosis

• Low pH is connected with fetal hypoxia

but

So far, no single study has proven better neonatal outcome, nor decreased incidence of cerebral palsy
by the use of scalp-pH

".....the pan-galactical trial"

- Special conditions to consider :
 - Prematurity (< 34 weeks)
 - Chorionamnitis

• Conclusion:

- scalp-pH in comb. with CTG is the mainstay

at present no other (and for sure - no better)
 supplement with CTG

British Journal of Obstetrics and Gynaecology April 1992, Vol. 99, pp. 307-309

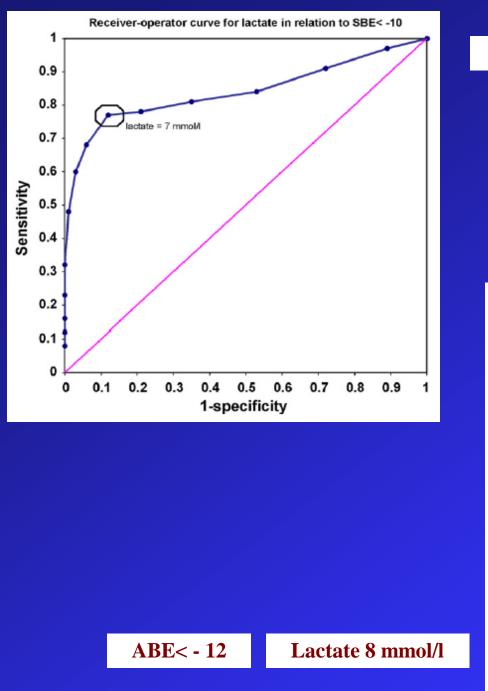
FETAL AND NEONATAL MEDICINE

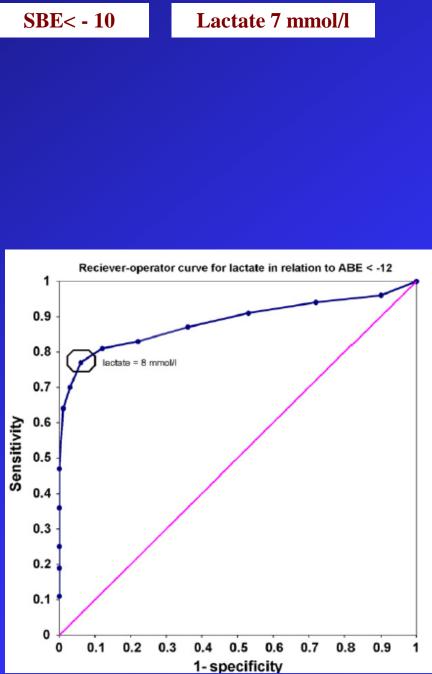
Fetal scalp and umbilical artery blood lactate measured with a new test strip method

ABSTRACT
Objective To compare the measurement of lactate in fetal scalp and umbilical
artery blood by a new dry reagent strip method with a commercially available enzy-
matic method using plasma (Monotest).
Design Comparative study.

Available online at www.sciencedirect.com

European Journal of Obstetrics & Gynecology and Reproductive Biology 139 (2008) 16–20


Umbilical cord blood lactate: A valuable tool in the assessment of fetal metabolic acidosis


Anne Cathrine Gjerris^{a,*}, Jette Stær-Jensen^a, Jan Stener Jørgensen^b, Thomas Bergholt^a, Carsten Nickelsen^a

^aDepartment of Obstetrics and Gynaecology, Hvidovre University Hospital, 2100 Copenhagen, Denmark ^bDepartment of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark

umbilical cord arterial blood samples from 2554 singleton deliveries

Conclusion: Lactate in arterial umbilical cord blood might be a more direct and accordingly more correct indicator of fetal asphyxia at delivery than pH and SBE (or ABE). Its potential as a predictor of neonatal outcome needs to be evaluated in future studies.

• Most important take home messages

- UCBGA is recommended in high-risk deliveries, but ought to be after <u>ALL</u> deliveries since early intervention can be considered (e.g. cooling)
- Optimal interpretation only when both art. and ven. samples are obtained after immediate double clamping of segment of umbilical cord.
- Low pH in vigourous newborns has a fair prognosis,
 whereas non-vigourous newborns with pH<7.0 are at high risk of HIE
- SR+MA: Even in low risk populations, low pH is substantially associated with neonatal morbidity and mortality and later cerebral palsy
- Scalp-pH (FBS) is gold standard in conjunction with CTG as monitor of fetal wellbeing during labour
- Lactate in both FBS and in UCBGA may be the future

